
Neural Networks

Shrey Gupta

Applied Machine Learning (HOUSECS 59-01), Duke University

October 31, 2018



Brain View

I An original goal with the creation of neural networks was
modeling the human brain.

I The human brain is a collection of neurons, connected
together as part of a “network”.

I Signals are “spikes” that travel through the network to
produce a response.

Image source: John Lieff

http://jonlieffmd.com/blog/how-many-different-kinds-of-neurons-are-there


Neurons

I Let’s try to model an individual neuron: it should be able to
take in multiple inputs, and produce an output to model a
spike.



Neurons

I Denote each of the inputs into a neuron as x1, x2, ..., xp
(where p is known).

I Create weights w1,w2, ...,wp and a bias b. (More on how
these weights and bias are determined later.)

I Determine the score f (w , x) = wT x + b that conveys
information about the input.

I Apply a nonlinear activation function φ(·), and produce an
output g(w , x) = φ(wT x + b).



Activation Functions

I We use an activation function (φ) to model a “spike” in a
neuron (i.e. that neuron is activated).

I Ex: step function, tanh, sigmoid, ReLU, leaky ReLU.

I For the step function, if our score (dot product between
weights and input) exceeds a certain threshold, our output is
one, and the neuron is activated.

I Else, zero.

I The other four more commonly used activation functions are
deviations from the step function, but serve a similar purpose.



Activation Functions

Image source: Introduction to Exponential Linear Units

https://medium.com/@krishnakalyan3/introduction-to-exponential-linear-unit-d3e2904b366c


Neurons

I We now have a neuron that takes some input, and produces a
spike—as a function of the input and weights (and
bias)—when it deems the input to be “significant”.

I We’ll learn how to train the network weights and bias later.

I The next step is to connect neurons together.



Layers

I We can construct a layer of neurons that take in the same
input, and produce some output.

I Each neuron learns something “different” about the input.

I We can stack layers to create a network of neurons (i.e.
neural network).

I Each layer will take the output of the previous layer as input.

Image source: Stanford University

http://cs231n.github.io/convolutional-networks/


Architecture Summary

I Input layer: single vector of feature inputs.

I Hidden layer(s): sets of neurons with nonlinear activation,
fully connected by weights (with biases) to other layers.

I Output layer: output score or prediction (ŷi ).

Image source: Stanford University

http://cs231n.github.io/convolutional-networks/


Backpropagation

I The backpropagation algorithm can be used to compute the
weights of each neuron in the network.

I While outside the scope of the course, the algorithm is simply
an application of the chain rule, where we try to minimize the
error in predictions

∑
1
2 (yi − ŷi )

2.

I Backpropagation tells us the “relative update rate” (gradient)
for each weight, and we can use gradient descent (with
learning rate α) to actually update the weights.

I Hence, we repeat: backpropagation (to calculate gradients),
gradient descent (to adjust the weights), and a forward pass
(to calculate the errors).



Advantages

I Neural networks are highly expressive (nonlinear) models that
can fit nearly any function of the data well (universal
approximation theorem).

I Neural networks have performed well in areas such as
computer vision and natural language processing.

I Hidden layers in the network can characterize the latent
structure of the data well.



Disadvantages

I Optimization is non-convex and the algorithm can produce
poor solutions (e.g. get stuck at local optima).

I Neural networks are not very interpretable (i.e. “black
boxes”).

I There are several parameters, such as network structure, that
must be tuned.



Technique: Convergence

I Convergence during gradient descent can be a problem due to
vanishing and exploding gradients (think about the sigmoid
and tanh activation functions).

I Fix: use the ReLU or leaky ReLU activation functions.

I Tip: common learning rates α during gradient descent are
between 10−5 and 10−3.

I Note: different initialization (of the neuron weights and
biases) can affect the final model.



Technique: Batch Normalization

I Engineering technique to improve convergence: normalize the
outputs of various neurons in the same layer (subtract the
mean and divide by the standard deviation), before activation
is applied.

I Include the mean and standard deviation as separate inputs
into the following layer.



Technique: Dropout

I Engineering technique to speed-up convergence: during each
forward pass, with probability p (usually 0.5), set output
weights to 0 for each neuron (during training).

I Utilize the network as normal during testing.

I Idea: “dropout” is equivalent to training an exponential
number of “submodels”.

Image source: Cynthia Rudin



Notebook

I Today’s notebook will work through an example of neural
networks.


