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Unsupervised Learning

I Data is unlabeled (no “ground truth”).

I Problems: clustering, density estimation, and pattern
detection.



Clustering

I Most common unsupervised problem is clustering.

I Can we separate the data into different clusters, each with a
given (but not necessarily the same class) distribution?

I We can then analyze the underlying properties of each cluster.



Hard vs. Soft Clustering

I Hard clustering: assign each point to a cluster.

I Soft clustering: assign a probability γik that each point xi
belongs to the kth cluster.



Density Estimation

I Can we determine the underlying probability distribution(s) on
unlabeled data?



Example

I Crime is happening on the streets of Gotham City!

I There are n = 2 criminals: Bane and the Joker. Suppose every
night, one of the two decides to commit a series of crimes.

I Bane succeeds 50% of the time, and the Joker 70% (the Joker
is more skilled). That is, P(success) = 0.5 for Bane and
P(success) = 0.7 for the Joker on each attempt.

I Neither criminal is identified nor caught during each attempt.

I Over a series of m = 100 nights, j = 10 crimes are attempted
by one of the two criminals.



Example

I Suppose we know there are n = 2 criminals, and the number
of crimes (from j = 10 attempts) succeeded during each of
m = 100 nights.

I However, we don’t know which criminal committed the series
of crimes each night, and P(success) for each criminal.

I Can we recover a probability that a night’s crimes were
committed by a given criminal, and P(success) for each
criminal?

I Yes! Utilize the expectation-maximization (EM) algorithm.



EM Algorithm

I Powerful algorithm to estimate maximum likelihood for
various model parameters, even with several missing data or
unobserved latent variables.

I In our example, cluster assignments are the unobserved latent
variables: on a given night, which criminal committed the
series of crimes?

I Mixture of Gaussians clustering (GMM) is a soft clustering
and density estimation algorithm that allows us to maximize
likelihood (of the parameters of the cluster distributions) even
with these latent variables.



EM Algorithm

I Randomly initialize the parameters θ of the n distributions
(clusters).

I E-step: compute the probabilities γik that each point xi
belongs to the kth cluster:

γik = P(zi = k|xi , θ(t)).

I M-step: maximize a lower bound on the likelihood of an
estimate of the new parameters θ(t+1).

I Repeat until convergence.



Mixture of Gaussians

I Specific case of EM-algorithm: assumes each cluster is
normally distributed with mean µ and variance Σ.

I E-step: compute γ
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Mixture of Gaussians

I Understanding the derivations of the formulas is beyond the
scope of this course.

I Instead, understand the interpretation of the EM algorithm,
with GMM as a specific case, and when it can be utilized.

I We can also apply it to our example.



Example

I Let’s return to our example: n = 2 criminals, and j = 10
attempted crimes from m = 100 nights.

I We don’t know which criminal committed the series of crimes
each night, and P(success) for each criminal.

I Today’s notebook contains a snippet of code to generate this
data. Let’s assume it is normally distributed.



Example

I We can implement a mixture of Gaussians model. Let’s do
that using the notebook.

I Observe γik , wk , µk over the k criminals. What is the
interpretation of each of these values?



Interpretation

I γik : probability criminal k committed a crime on night i .

I wk : proportion of nights criminal k commits a crime.

I µk : average number of successful crimes per night for criminal
k.



Applications

I But we still don’t have labels on the clusters! We don’t know
whether it was Bane or the Joker who is criminal k.

I In general, this is a problem for unlabeled data. What (or
who) do the clusters represent?

I We can correlate the parameters of each cluster (distribution).
Say the data also included the locations (in coordinates)
where the crime was committed, and the hour at which it was
committed.

I Questions we can ask: at what hour does criminal k commit a
crime, and where?



Applications

I Say over a few of the j nights, a witness comes out to identify
the criminal who performed the crime on that night.

I We can then assign a probability that Bane and the Joker are
criminal k , and probabilities that they committed crimes over
each of the j nights.

I Predictions of assigning Bane or the Joker to criminal k get
stronger the more identifications (labels) we have. But the
more labeled data we have, the less the need for the EM
algorithm.



Limitations

I Assumes clusters arise from the same distribution (in the
mixture of Gaussians case, from the normal distribution).

I Can be extremely slow: works well for low-dimensional data.


