Splines and Linear and Polynomial Regression

Shrey Gupta

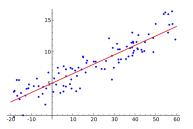
Applied Machine Learning (HOUSECS 59-01), Duke University

September 12, 2018

Regression

- Supervised learning: data (a subset from a larger distribution) is labeled, and we attempt to generalize to (predict) the larger distribution.
- Regression: predicts a continuous value output (i.e. estimates relationship among variables).

Regression: Examples



- Given data about square footage, age, zip code, and housing demand, predict the selling price of a house.
- Predict the percentage increase or decrease in the price of an equity.

(日)、

Recall

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & \dots & x_n^{(m)} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Data is stored in matrices and vectors.
- Given n (training) data points and m features (per data point).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Given labeled data vector y.

Recall

$$X_{test} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & \ddots & \vdots \\ x_k^{(1)} & x_k^{(2)} & x_k^{(3)} & \dots & x_k^{(m)} \end{bmatrix}, \hat{y}_{test} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_k \end{bmatrix}$$

▶ Given *k* testing data points and *m* features (per data point).

- ŷ_{test} = f(X_{test}) contains predictions of the regression algorithm, where f(·) is learned by the algorithm.
- How do we define $f(\cdot)$, and how does the algorithm "learn" it?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simple Linear Regression

$$y = \alpha + \beta x + \epsilon$$
$$\hat{y} = f(x) = \alpha + \beta x$$

- ► Goal: predict *y* from a single feature *x*.
- Allow α to be some bias not explained by x, and β the dependence of y on x.
- ► e accounts for the "error" not explained by the model, and hence our estimate is ŷ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Loss Function

$$\min \ell(f(x), y)$$
$$= \min \ell(\hat{y}, y) = \min \ell(\alpha + \beta x, y)$$

- We want our estimates ŷ to be as accurate as possible for our choices of α and β.
- ► Allow l to be some loss function, which gives a notion of the "distance" between ŷ and y.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Least-squares Error

$$\ell(f(x), y) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} \epsilon_i^2$$

- We will minimize the least-squares error, which is common in regression analysis for several reasons.
- Choices of α and β that minimize the loss, over the training data, will be used.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multiple Linear Regression

$$y = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_m x^{(m)} + \epsilon$$
$$\hat{y} = f(x) = \beta_0 + \beta_1 x^{(1)} + \beta_2 x^{(2)} + \dots + \beta_m x^{(m)}$$

- Goal: predict y from multiple features $x^{(1)}, \ldots, x^{(m)}$.
- Allow β₀ to be some *bias* not explained by the features, and β_i the dependence of y on feature x⁽ⁱ⁾.
- ► e accounts for the "error" not explained by the model, and hence our estimate is ŷ.

Compact Notation

$$y = \beta^T x + \epsilon$$
$$\hat{y} = f(x) = \beta^T x$$

• $\beta = (\beta_0, \beta_1, \dots, \beta_m)^T$ and $x = (1, x^{(1)}, x^{(2)}, \dots, x^{(m)})^T$. • We can further extend this to allow for more data points.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Compact Notation

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \dots & x_1^{(m)} \\ 1 & x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \dots & x_2^{(m)} \\ \vdots & & \ddots & \vdots \\ 1 & x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & \dots & x_n^{(m)} \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$y = X\beta + \epsilon$$
$$\hat{y} = f(X) = X\beta$$

• $\beta = (\beta_0, \beta_1, \dots, \beta_m)^T$ as before.

Multiple Linear Regression

$$\min \ell(f(x), y) = \min \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Again, we want our estimates ŷ to be as accurate as possible for our choice of β.
- Utilize the least-squares error as the loss function.
- Closed form solution: β = (X^TX)⁻¹X^Ty (over the training data).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiple Polynomial Regression

- y may not necessarily have a linear dependence on x.
- ► Solution: simply create new "features" (x⁽ⁱ⁾)², (x⁽ⁱ⁾)³,... for each feature x⁽ⁱ⁾ (polynomial regression).
 - Closed form solution: $\beta = (X^T X)^{-1} X^T y$ (remains same).
 - High degree polynomials may lead to overfitting: choose degree via cross-validation (discussed later).

Practicalities

- ► Closed form solution β = (X^TX)⁻¹X^Ty may not be possible, as (X^TX)⁻¹ may not exist: use *pseudoinverse* instead.
- Still, computing the pseudoinverse (which uses the singular value decomposition) takes O(min(mn², m²n)) running time.
- May need to use gradient descent instead, with some learning rate α.
 - Choose some initial value of β .
 - Compute gradient of loss function, and move in direction of steepest (negative) change with step size α (chosen carefully).

• Update β , and repeat until convergence.

Gradient Descent

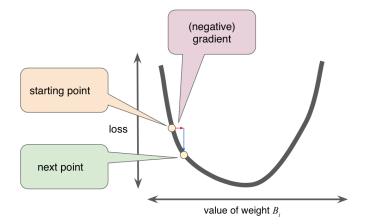


Image source: Google Developers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Feature Scaling

In general, it is important to scale features such that µ^(j) = 0 and σ^(j) = 1.

 Allows for proper convergence (in gradient descent) and assigns equal weight to features (in other applications and algorithms).

Regularization

- Goal is to prevent overfitting.
- General form: min ℓ(f(x), y) + λR(f), where ℓ is the loss function, R is the regularization function, and λ is the regularization coefficient.
 - Ordinary least squares regression: $\lambda = 0$.
 - Choose λ via cross-validation (discussed later).
- ► Has applications beyond linear and polynomial regression.

LASSO vs. Ridge Regression

- LASSO regression: min $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2 + \lambda |\beta|_1$
 - Used for variable section: certain coefficients β_i can be 0.

- Does not have a closed form solution.
- Ridge regression: min $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2 + \lambda |\beta|_2^2$
 - Closed form solution: $\beta = (X^T X + \lambda I)^{-1} X^T y$.

Interpolation

- Keeps "training" set of data points fixed and constructs a function around these data points.
- Note that, by construction, we are "overfitting" on the training data.
- Not very useful in machine learning, but applicable to other disciplines, and important nevertheless.
 - Used to estimate values *within* the range of data we have.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regression is used to *extrapolate* to outside data points.

Spline Interpolation

- Create piecewise polynomials between each pair of consecutive points.
- Usually cubic polynomials ("splines") to make the first and second derivatives continuous.

Image source: Wikipedia

Notebook

 Today's notebook will work through an example of regression, including simple, multiple, and polynomial regression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We'll also look at utilizing regularization.