
Support Vector Machines and Kernel Methods

Shrey Gupta

Applied Machine Learning (HOUSECS 59-01), Duke University

October 10, 2018

Support Vector Machines

I Suppose we plotted all our relevant data for a classification
problem–there should be a dividing “line” (or hyperplane)
that classifies the data into classes.

I Obviously, there might not be a perfect classification
hyperplane (and more features might be needed).

Image source: Wikipedia

https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg

Margin

I The margin of a data point is it’s distance to the classification
boundary.

I Positive if on the correct side of the boundary, and negative if
not.

I It would be preferred to have all data points as far from the
boundary as possible (i.e. large margin).

I Why? Small shifts in the boundary won’t affect the
classification output.

Margin

Image source: Wikipedia

https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg

Margin

I Support vector machines (SVMs) maximize the minimum
margin over the training set.

I Many other machine learning algorithms are poor at this.
I Hence, test data points near the boundary can easily be

misclassified.

Support Vectors

I Support vectors “define” the classification boundary: they are
the data points nearest to the boundary.

I The other data points are “irrelevant” and do not have an
effect on the boundary.

Optional: Lagrangian Formulation

min
w ,b,ξ

1

2
|w |2 + C

n∑
i=0

ξi

s.t. yi (w
Tφ(xi) + b) ≥ 1− ξi , ξi ≥ 0 ∀ i

I This is our goal: the first term relates to maximizing the
minimum margin (we want 1/|w |2 to be large).

I The second term allows some “slack” for incorrect
classifications: we allow them, but with some penalty (C).

I φ is a kernel transformation, and will be introduced soon.

Optional: Lagrangian Formulation

min
w ,b,ξ

1

2
|w |2 + C

n∑
i=0

ξi

s.t. yi (w
Tφ(xi) + b) ≥ 1− ξi , ξi ≥ 0 ∀ i

I We have some constraints; the first is that the scaled margin,
plus slack, must be greater than one.

I The second is that the “slack” must be positive (which makes
sense intuitively).

Optional: Lagrangian Formulation

L =
1

2
|w |2 + C

n∑
i=0

ξi −
n∑

i=0

αi [yi (w
Tφ(xi) + b)− 1 + ξi]−

n∑
i=0

riξi

max
α

n∑
i=0

αi −
1

2

n∑
i ,k=0

αiαkyiykφ(xi)
Tφ(xk)

s.t. 0 ≤ αi ≤ C ∀ i ,
n∑

i=0

αiyi = 0

I We can formulate the Lagrangian and dual problem, after a
little bit of work.

Optional: Lagrangian Formulation

I We can solve the dual problem using an algorithm such as
sequential minimal optimization.

I Note: while this is outside the scope of the course, if you find
it interesting, take a deeper look!

Kernels

I It’s very likely that the dividing hyperplane is not enough to
separate the data well.

I Let’s use a “trick” similar to what we did with regression:
transform our features using a kernel.

I A lot of the mathematics behind kernels is out of the scope of
the course, but may be interesting (and insightful) to you.

Linear Kernels

I Kernel: 〈x , x ′〉 is the “basic” kernel, and does not map to a
higher dimensional space.

Image source: scikit-learn

https://scikit-learn.org/stable/modules/svm.html

Polynomial Kernels

I Kernel: (〈x , x ′〉+ c)d maps to a d-dimensional space, with
hyperparameters c and d .

Image source: scikit-learn

https://scikit-learn.org/stable/modules/svm.html

RBF Kernels

I Kernel: exp(−γ|x − x ′|2) maps to an infinite dimensional
space, with hyperparameter γ.

Image source: scikit-learn

https://scikit-learn.org/stable/modules/svm.html

Practicalities

I Distance is an important metric for SVMs, so it is crucial to
normalize features! (Some packages do this automatically.)

I Start with simpler kernels first, and work your way up to more
complex kernels if they perform better.

I Very large dataset: algorithm can become infeasible.
I Small dataset but large number of features: be careful using a

kernel (e.g. RBF) that easily over-fits the training data.

Notebook

I Today’s notebook will work through an example of support
vector machines.

