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Support Vector Machines

» Suppose we plotted all our relevant data for a classification
problem—there should be a dividing “line” (or hyperplane)
that classifies the data into classes.

» Obviously, there might not be a perfect classification
hyperplane (and more features might be needed).

Image source: Wikipedia


https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg

Margin

» The margin of a data point is it's distance to the classification
boundary.

» Positive if on the correct side of the boundary, and negative if
not.
> It would be preferred to have all data points as far from the
boundary as possible (i.e. large margin).

» Why? Small shifts in the boundary won't affect the
classification output.



Margin
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https://upload.wikimedia.org/wikipedia/commons/f/fe/Kernel_Machine.svg

Margin

» Support vector machines (SVMs) maximize the minimum
margin over the training set.
» Many other machine learning algorithms are poor at this.

» Hence, test data points near the boundary can easily be
misclassified.



Support Vectors

» Support vectors “define” the classification boundary: they are
the data points nearest to the boundary.
» The other data points are “irrelevant” and do not have an
effect on the boundary.



Optional: Lagrangian Formulation
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» This is our goal: the first term relates to maximizing the
minimum margin (we want 1/|w|? to be large).

» The second term allows some “slack” for incorrect
classifications: we allow them, but with some penalty (C).

> ¢ is a kernel transformation, and will be introduced soon.



Optional: Lagrangian Formulation
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» We have some constraints; the first is that the scaled margin,
plus slack, must be greater than one.

» The second is that the “slack” must be positive (which makes
sense intuitively).



Optional: Lagrangian Formulation
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» We can formulate the Lagrangian and dual problem, after a
little bit of work.



Optional: Lagrangian Formulation

» We can solve the dual problem using an algorithm such as
sequential minimal optimization.

» Note: while this is outside the scope of the course, if you find
it interesting, take a deeper look!



Kernels

> It's very likely that the dividing hyperplane is not enough to
separate the data well.

> Let's use a “trick” similar to what we did with regression:
transform our features using a kernel.

» A lot of the mathematics behind kernels is out of the scope of
the course, but may be interesting (and insightful) to you.



Linear Kernels

SVC with linear kernel

Sepal width

Sepal length

» Kernel: (x,x’) is the "basic” kernel, and does not map to a
higher dimensional space.

Image source: scikit-learn



https://scikit-learn.org/stable/modules/svm.html

Polynomial Kernels

SVC with polynomial (degree 3) kernel

Sepal width

Sepal length

» Kernel: ((x,x") + c) maps to a d-dimensional space, with
hyperparameters ¢ and d.

Image source: scikit-learn


https://scikit-learn.org/stable/modules/svm.html

RBF Kernels

SVC with RBF kernel

Sepal width

Sepal length

» Kernel: exp(—v|x — x’|?) maps to an infinite dimensional
space, with hyperparameter ~.

Image source: scikit-learn



https://scikit-learn.org/stable/modules/svm.html

Practicalities

» Distance is an important metric for SVMs, so it is crucial to
normalize features! (Some packages do this automatically.)

» Start with simpler kernels first, and work your way up to more
complex kernels if they perform better.

» Very large dataset: algorithm can become infeasible.
» Small dataset but large number of features: be careful using a
kernel (e.g. RBF) that easily over-fits the training data.



Notebook

» Today's notebook will work through an example of support
vector machines.



